==> probability/flips/once.in.run.s <== References: John P. Robinson, Transition Count and Syndrome are Uncorrelated, IEEE Transactions on Information Theory, Jan 1988. First we define a function or enumerator P(n,k) as the number of length "n" sequences that generate "k" successes. For example, P(4,1)= 4 (HHTH, HTHH, TTHT, and THTT are 4 possible length 4 sequences). I derived two generating functions g(x) and h(x) in order to enumerate P(n,k), they are compactly represented by the following matrix polynomial. _ _ _ _ _ _ | g(x) | | 1 1 | (n-3) | 4 | | | = | | | | | h(x) | | 1 x | |2+2x | |_ _| |_ _| |_ _| The above is expressed as matrix generating function. It can be shown that P(n,k) is the coefficient of the x^k in the polynomial (g(x)+h(x)). For example, if n=4 we get (g(x)+h(x)) from the matrix generating function as (10+4x+2x^2). Clearly, P(4,1) (coefficient of x) is 4 and P(4,2)=2 ( There are two such sequences THTH, and HTHT). We can show that mean(k) = (n-2)/4 and sd= square_root(5n-12)/4 We need to generate "n" samples. This can be done by using sequences of length (n+2). Then our new statistics would be mean = n/4 sd = square_root(5n-2)/4 Similar approach can be followed for higher dimensional cases.