==> logic/smullyan/stamps.s <== B says: "Suppose I have red-red. A would have said on her second turn: 'I see that B has red-red. If I also have red-red, then all four reds would be used, and C would have realized that she had green-green. But C didn't, so I don't have red-red. Suppose I have green-green. In that case, C would have realized that if she had red-red, I would have seen four reds and I would have answered that I had green-green on my first turn. On the other hand, if she also has green-green [we assume that A can see C; this line is only for completeness], then B would have seen four greens and she would have answered that she had two reds. So C would have realized that, if I have green-green and B has red-red, and if neither of us answered on our first turn, then she must have green-red. "'But she didn't. So I can't have green-green either, and if I can't have green-green or red-red, then I must have green-red.' So B continues: "But she (A) didn't say that she had green-red, so the supposition that I have red-red must be wrong. And as my logic applies to green-green as well, then I must have green-red." So B had green-red, and we don't know the distribution of the others certainly. (Actually, it is possible to take the last step first, and deduce that the person who answered YES must have a solution which would work if the greens and reds were switched -- red-green.)