==> analysis/tower.s <== ANSWER: e^(1/e) Let N be the number in question and R the result of the process. Then R can be defined recursively by the equation: (1) R = N^R Taking the logarithm of both sides of (1): (2) ln(R) = R * ln(N) Dividing (2) by R and rearranging: (3) ln(N) = ln(R) / R Exponentiating (3): (4) N = R^(1/R) We wish to find the maximum value of N with respect to R. Find the derivative of N with respect to R and set it equal to zero: (5) d(N)/d(R) = (1 - ln(R)) / R^2 = 0 For finite values of R, (5) is satisfied by R = e. This is a maximum of N if the second derivative of N at R = e is less than zero. (6) d2(N)/d2(R) | R=e = (2 * ln(R) - 3) / R^3 | R=e = -1 / e^3 < 0 The solution therefore is (4) at R = e: (7) Nmax = e^(1/e)